Calabi Yau Algebras and Weighted Quiver Polyhedra

نویسندگان

  • RAF BOCKLANDT
  • Markus Reineke
چکیده

Dimer models have been used in string theory to construct path algebras with relations that are 3-dimensional Calabi Yau Algebras. These constructions result in algebras that share some specific properties: they are finitely generated modules over their centers and their representation spaces are toric varieties. In order to describe these algebras we introduce the notion of a toric order and show that all toric orders 3-dimensional Calabi Yau algebras can be constructed from dimer models on a torus. Toric orders are examples of a much broader class of algebras: positively graded category algebras with cancellation. For this broader class the CY-3 condition also implies the existence of a weighted quiver polyhedron which is an extension of dimer models obtained by replacing the torus with any two-dimensional compact orientable orbifold. We discuss which of these quiver polyhedra give rise to Calabi Yau algebras.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calabi-Yau triangulated categories

We review the definition of a Calabi-Yau triangulated category and survey examples coming from the representation theory of quivers and finite-dimensional algebras. Our main motivation comes from the links between quiver representations and Fomin-Zelevinsky’s cluster algebras. Mathematics Subject Classification (2000). Primary 18E30; Secondary 16D90, 18G10.

متن کامل

Cluster Structures for 2-calabi-yau Categories and Unipotent Groups

We investigate cluster tilting objects (and subcategories) in triangulated 2-Calabi-Yau categories and related categories. In particular we construct a new class of such categories related to preprojective algebras of non Dynkin quivers associated with elements in the Coxeter group. This class of 2-Calabi-Yau categories contains the cluster categories and the stable categories of preprojective ...

متن کامل

Quivers in Representation Theory (18.735, Spring

Quivers are directed graphs. The term is the term used in representation theory, which goes along with the following notion: a representation of a quiver is an assignment of vector spaces to vertices and linear maps between the vector spaces to the arrows. Quivers appear in many areas of mathematics: (1) Algebraic geometry (Hilbert schemes, moduli spaces (represent these as varieties of quiver ...

متن کامل

Noncommutative Tangent Cones and Calabi Yau Algebras

We study the generalization of the idea of a local quiver of a representation of a formally smooth algebra, to broader classes of finitely generated algebras. In this new setting we can construct for every semisimple representation M a local model and a noncommutative tangent cone. The representation schemes of these new algebras model the local structure and the tangent cone of the representat...

متن کامل

Acyclic Calabi-yau Categories

We prove a structure theorem for triangulated Calabi-Yau categories: An algebraic 2-Calabi-Yau triangulated category over an algebraically closed field is a cluster category iff it contains a cluster tilting subcategory whose quiver has no oriented cycles. We prove a similar characterization for higher cluster categories. As an application to commutative algebra, we show that the stable categor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009